
CHAPTER

NINE

PETRI NETS AND DATA FLOW

This chapter concerns models inspired by graphs. These models use the nodes of
a graph to represent active processing agents that exchange information along
paths speci�ed by the edges. We discuss two such models, Petri Nets and Data
Flow.

Petri Nets is a formal modeling technique that encodes the states of a dy-
namic system as the markings of tokens on a graph. Petri Nets expresses in the
graph structure the possible state transitions of the system being modeled. Petri
Nets has been used to model not only computing systems, but also systems from
domains as diverse as neurology, chemistry, and economics. Many theorems have
been proved about the formal properties of Petri Nets.

Petri Nets is useful for modeling the states of systems. The tokens passed
around a net hold no information. Instead, the number and arrangement of
tokens encode the modeled system's state. One can treat a Petri net as a com-
puting mechanism by counting tokens. However, Petri Nets is a weak device for
expressing computation. They are not even Turing-equivalent. Data Flow ex-
tends the Petri Nets metaphor to associate information with the tokens and to
permit computation at the graph nodes. In doing so, Data Flow broadens the
limited computational ability of Petri Nets into a mechanism that can compute
any computable function. The Data Flow model has excited interest in building
Data Flow machines, computers whose internal architecture reects Data Flow's
functional nature [Agerwala 82; Treleaven 82]. The designers of these machines
hope to avoid the bottleneck of the single-instruction cycle of conventional von
Neumann architectures, producing systems that exploit Data Flow's potential
concurrency.

Petri Nets is an outgrowth of the 1962 doctoral dissertation of Carl Adam
Petri [Petri 62]. Much of the early work on Petri Nets was done by A. W. Holt
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and his associates at Applied Data Research [Holt 68]. Since then, there has been
much interest in both the theory and application of Petri Nets. Peterson's article
in Computing Surveys [Peterson 77] and his book, Petri Net Theory and the

Modeling of Systems [Peterson 81], are comprehensive overviews of the subject.

Data Flow models can be traced to Adams' dissertation on data-driven com-
putation [Adams 68], Karp and Miller's work on program schemata [Karp 66],
Rodriguez-Bezos's invention of \program graphs" [Rodriguez-Bezos 69], unpub-
lished work by Ivan Sutherland on graphical programming, and the single as-
signment concept of Tesler and Enea [Tesler 68]. The graph-and-token structure
we describe is based on Fosseen's M.I.T. Master's thesis [Fosseen 72]. Early work
on Data Flow machines includes the work of Arvind and Gostelow [Arvind 77],
Davis [Davis 78], Dennis [Dennis 74], Syre et al. [Berger 82; Comte 79], and
Watson and Gurd [Watson 82].

9-1 PETRI NETS

Petri Nets models the states of a system by marking the nodes of a graph with
tokens. Petri Nets not only represents states by marking nodes, but also encodes
the permissible state transitions in the graph structure.

The graph in Figure 9-1 is a Petri net. This graph has two kinds of nodes,
places, drawn as circles, and transitions, drawn as line segments. Directed edges
connect the places and the transitions. Every edge connects one place and one
transition. There can be several edges between any pair of places and transitions.
If there are k edges going from a place to a transition, we say that the in-degree
to that transition from that place is k. Similarly, the out-degree from a transition
to a place is the number of edges from that transition to that place.

Figure 9-1 A Petri Net.
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Figure 9-2 The barbershop Petri net.

Formally, a Petri net is a bipartite, directed multigraph. That is, a Petri net
is like a conventional graph composed of nodes and edges, but (1) the graph is
directed|each edge goes from a particular node to another node, (2) the graph
is a multigraph|there can be several edges from any given node to another, and
(3) the graph is bipartite|the nodes of the graph can be partitioned into two
sets (the transitions and the places), such that each edge connects an element of
one set to an element of the other.*

Petri nets are marked with tokens. A marked Petri net is the association of
a number with each place, the number of tokens on that place. The number of

* There is a natural mapping from Petri nets to multisets. (A multiset is a set in which

individual elements can appear repeatedly.) In this mapping, the nodes of the graph represent

elements of a domain, and the edges of the graph encode functions over multisets of nodes.

Peterson presents the details of one such formalization [Peterson 81].
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tokens on any place at one time is not bounded but is always �nite. Figure 9-2
shows a marked Petri net. This Petri net models the operation of a barbershop.
Each token in the waiting place represents a customer waiting for a haircut. Each
token in the cutting place represents a barber giving a haircut. Each token in the
resting place represents an idle barber. Each token in the exit place represents a
customer leaving the shop. The �gure shows three customers waiting for service,
two current haircuts, and one resting barber. In general, the arrangement of
tokens on the places of a Petri net represents the state of the system modeled
by that net.

Figure 9-3 States of the barbershop.
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Execution of a Petri net is controlled by the number and distribution of
tokens on the places of that net. The arrangement of tokens is changed by the
�ring of the transitions. When a transition �res, it removes tokens from the places
that have edges running to the transition (the input places) and puts tokens on
those places that have edges running from the transition to them (the output
places). More speci�cally, a transition may �re if it is enabled. A transition is
enabled if every place connected to that transition with in-degree k has at least
k tokens. For example, let there be three input edges from place p to transition
t and �ve input edges from place q to t. Then t is enabled if p has at least three
tokens and q has at least �ve.

An enabled transition can �re at any time. In �ring, a transition consumes
one token from (the place associated with) each input edge and produces one
token on (the place associated with) each output edge. Thus, �ring a transition
on a Petri net produces a new marking of the net. Figure 9-3 shows succes-
sive �rings of transitions of the barbershop net. The successive states of the
graph model potential successive states of the (real) barbershop. An enabled
transition ceases to be enabled if its enabling tokens are consumed by the �r-
ing of some other transition. In Figure 9-4, the �ring of transition S disables
transition T.

Petri Net models of systems can be used to prove properties such as mutual
exclusion (several processes are not engaged in conicting activities at the same
time), liveness (a system of processes does not deadlock; each individual process
continues to progress), and reachability (some particular state can or cannot be
reached). For example, using the barbershop net we could show that no two
barbers ever cut the same customer's hair, that the barbershop as a whole can
always make progress in hair cutting, and that the number of customers getting
haircuts never exceeds the original number of barbers.

Figure 9-4 Disabled transition.
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Modeling with Petri Nets

To design a Petri net to model a system, the parts of that system are classi�ed
into events and conditions [Peterson 81]. Events are actions, such as a barber
beginning a haircut, two chemicals combining to form a third, or a job completing
on a computer system. Conditions are descriptions of the state of a system.
Typical conditions include \idle barber," \sodium ion present," and \computer
system running." The preconditions of an event are those conditions that must
be present before an event can occur. Before a barber can begin a haircut, he
must be idle and a customer must be waiting. Before a chemical can form in a
reaction, the reactants and catalyst must be present. Before a particular kind
of computer job completes, the computer system must be running, the job must
have started, and it must have been assigned two tape drives. Events remove some
preconditions and assert other postconditions. The barber beginning a haircut
reduces by one the number of idle barbers and waiting customers and produces
the postcondition \a barber is cutting." The occurrence of a reaction removes
several units of each reactant chemical and produces the postcondition of an
additional unit of reaction chemical. The completion of a computer job ensures
the postcondition of an idle processor and two more free tape drives.

The usual technique for system modeling with Petri Nets is to make each
possible event a transition and each relevant condition a place. If P is a precon-
dition for an event T, then the place associated with P is an input place of the
transition associated with T. If Q is a postcondition of an event T, then Q 's
place is an output place of T 's transition. Thus, in the barbershop net the event
\a haircut commences" has the preconditions of a waiting customer and an idle
barber and the postcondition of a haircut occurring. It consumes one token from
each of \waiting customer" and \idle barber," and puts one token on \haircut
occurring." Related events can be counted by having several tokens on a place.
Without multiple tokens, we would need separate conditions (places) for \one
barber idle," \two barbers idle," and \three barbers idle," and would have no
way of specifying an unbounded number of waiting customers.

Mutual exclusion This technique leads to simple models for many of the stan-
dard synchronization problems. For example, consider the problem of modeling
the mutual exclusion of n processes. For this problem there are 2n events: one
event for the entry of each process into its critical region, and another for its
exit from its critical region. We recognize 2n + 1 possible conditions: one con-
dition for each process being \in its critical region," another for it being \in its
concurrent region" and one condition that \no process is in its critical region."
The preconditions for a process to enter its critical region are that it is \in its
concurrent region," and that \no process is in its critical region." The event of
a process entering its critical region deletes these two preconditions and asserts
the postcondition that the process is \in its critical region." Similarly, a process
can exit its critical region when it is \in its critical region." This exit deletes the
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Figure 9-5 Three mutually exclusive processes.

is \in the critical region" precondition, and asserts the postconditions that this
particular process is \in its concurrent region" and that \no process is in its crit-
ical region." Figure 9-5 shows a Petri net for three mutually exclusive processes.
The structure of this net is a straightforward consequence of this analysis. That
the net is easier to understand than the English description is a good argument
for Petri Nets as a modeling tool.*

This Petri net models three mutually exclusive processes. It is not a pro-
gram for arranging mutual exclusion. We can analyze this net to show, for ex-
ample, that the processes are mutually exclusive and do not deadlock. However,
the model does not indicate how the mutual exclusion it represents is to be
accomplished. Petri nets automatically recognize simultaneous conditions and
simultaneously e�ect changes. This ability avoids the major issue in program-
ming synchronization problems, where the atomic actions are at a much less
comprehensive level.

Dining philosophers Modeling the dining philosophers problem with Petri
Nets is similar to modeling mutual exclusion. Each philosopher cycles through

* We could have modeled this situation without the condition \no process is in its critical

region," at the cost of a more complex net. Exercise 9-2 asks for such a net.
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six states: thinking; having the left fork in preparation for eating; having both
forks; eating; having only the right fork in preparation for thinking; having nei-
ther fork; and then back to thinking. For each fork, we have a condition that
states that it is free. A philosopher can pick up a fork if the fork is free (and
she is ready to do so); a philosopher can drop a fork if she is ready to do so.
Figure 9-6 shows a Petri net that models the states of the dining philosophers.

Figure 9-6 The dining philosophers.
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This solution is susceptible to deadlock. Our other examples of dining
philosopher programs have avoided deadlock by keeping count of the number
of philosophers in the room, barring entry to the �fth philosopher. Exercise 9-4
asks for the Petri net that models the deadlock-free solution.

Issues in Petri Nets Theory

A major limitation of Petri Nets is an inability to determine if a place is empty.
To overcome this problem when modeling, we must allocate explicit places for
negated conditions. For example, \this process is not in its critical region" in
the mutual exclusion net is a negated condition. However, this is sometimes
inadequate to model situations involving counting. If we can bound the number
of tokens that can be in a particular place, then we can count the tokens as they
leave that place, recognizing when the count is full. But this does not work when
the number of tokens that can be on a place is unbounded.

The readers-writers problem illustrates testing for bounded empty places
but not for unbounded empty places. In a system with (at most) three readers, a
writer can write if three \can read" tokens are present. The Petri net in Figure 9-7
models the readers-writers problem for three readers and a single writer. The
limitation of reader-free writing is enforced by three input lines from the \free

Figure 9-7 The readers-writers problem.
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readers" place to the \start writing" transition (and the corresponding three
output lines from the \stop writing" transition to the \free readers" place). At
any time, the number of tokens in the \free readers" place is the di�erence
between the total number of readers (three) and the number of readers who are
reading. A writer can write when the number of readers who are reading is zero|
which is equivalent to one token in the \free readers" place for each reader. If
there are n readers, we can test for n tokens in the \free readers" place by making
the in-degree of the \start writing" transition be n. However, this solution is not
practical if the number of potential readers is unbounded.

The inability to test for a speci�c marking (such as zero) in an unbounded
place is the essential weakness of Petri nets. The issue of deciding if a given Petri
net with a particular marking of tokens can ever achieve some other marking is
the reachability problem. There are algorithms that solve the reachability prob-
lem for Petri Nets [Kosaraju 82; Mayr 81; Sacerdote 77]. These algorithms are
equivalent to solving the Petri Nets halting problem. Thus, Petri Nets is not
even Turing-equivalent.

9-2 DATA FLOW

Conceptually, Data Flow takes the Petri Nets theme of modeling state by suc-
cessive markings of tokens on a graph structure and transforms it into the idea
of expressing computation through successive transformations of the values on
the tokens of a graph structure. (This is not to imply that Data Flow was di-
rectly derived from Petri Nets.) There are many versions of Data Flow systems,
all somewhat similar and all uni�ed by the notion of graph-structured compu-
tation. We base our description on the work of Jack Dennis and his colleagues
at M.I.T., without prejudice to the many other people who have studied Data
Flow.

We get the Data Flow model by performing four transformations on the Petri
Nets model. The �rst of these changes the plain, purely marking tokens of Petri
Nets to be holders of data values. Every Data Flow token has some value (such
as 5 or true or \Hello") in some speci�c data type (such as integer or boolean or
string) \inscribed" on it.

The second transformation takes the synchronizing transitions of Petri Nets
and converts them to the computational primitives. We rename the transitions
actors. Thus, the Petri Nets transition that merely recognized the presence of
tokens on each of its input arcs becomes, say, the Data Flow actor that consumes
two tokens, computes the sum of the values on those tokens, and outputs a new
token whose value is that sum. By and large, Data Flow retains the Petri Nets
idea of consuming the input tokens in �ring. However, the Petri Nets allowance
of explicit multiple outputs from a single transition is replaced by the Data Flow
restriction of each actor to a single output. (Some models of Data Flow do not
include this restriction.)
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The third change replaces the Petri Nets token holders, the places, with
Data Flow links. Links are the only things that increase the systemwide number
of tokens|a link can branch, placing a copy of its input token on each of its
output arms. Petri Nets places can store an unbounded number of tokens. In
Data Flow, at most a single token can be on any branch of a link at any time.
Certain links are designated input or output links for communication with the
external environment. Actors and links are the two kinds of nodes.

The �nal di�erence between Petri Nets and Data Flow concerns the rules for
�ring. In Petri Nets, a transition can �re as soon as all its input arcs have tokens.
Most Data Flow nodes cannot �re unless all their input arcs have tokens, but
there are some signi�cant exceptions. Additionally, since only a single token can
rest on any arm of a link at any time, a Data Flow node (actor or link) cannot
�re until its output arcs are free of tokens.

Like Petri Nets transitions, Data Flow nodes are enabled when their precon-
ditions are satis�ed. They do not have to �re immediately. Instead, an enabled
Data Flow node is only guaranteed to �re eventually.

Data Flow Graphs

Data Flow graphs are constructed by connecting actor diagrams with link dia-
grams. In contrast with Petri Nets, the \circles" in Data Flow do the work, while
the \lines" (edges) serve as storage. Data ow graphs distinguish data-carrying
paths and control paths. Data paths carry the data values of the computation:
integers, reals, characters, etc. Control paths carry control values (booleans) that
\open and close valves," regulating the ow of data around the graph. We draw
data items with black (�lled-in) tokens and arrowheads and control items with
white (open) tokens and arrowheads. In Figure 9-8, we see the two kinds of links:
data links and control links. We sometimes take liberties in drawing links to pass
many copies of a token to distant places on a graph. A Data Flow program is a
Data Flow graph with an initial arrangement of tokens on its arcs. A link can
�re whenever there is a token on its input arc and its output arcs are all empty.
Firing copies the input token to each output arc and consumes the input token.
Figure 9-9 shows the �ring rules for links.

Data Flow has six kinds of elementary actors: operators, deciders, booleans,
constants, gates, and simple-merges. Figure 9-10 illustrates the kinds of elemen-
tary actors.

Figure 9-8 Links.
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Figure 9-9 Firing rules for links.

Operators compute primitive functions such as addition and multiplication. An
operator can �re when all its input arcs have tokens and its output arc is empty.
If the input tokens of an operator have values v1; v2; : : :; vn and the operator
computes the function f , then �ring the operator consumes these tokens and
places a token with value f(v1; v2; : : :; vn) on the output arc. Figure 9-11 shows
the �ring of an addition operator.

Deciders are the corresponding actors for primitive predicates, such as � (less
than or equal to). Figure 9-12 shows the �ring of decider >.

Boolean actors (and, or, not) are the boolean functions of their control-value
inputs. Their �ring organization is the same as that of deciders and operators.

Figure 9-10 Elementary actors.
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Figure 9-11 Firing an operator.

A constant actor produces a stream of its constant as its output and is able to
�re whenever its output link is empty. Constant actors have no input arcs.

Gates allow control tokens to regulate the ow of data tokens. Data Flow has
two types of gates, T (true) gates and F (false) gates. A gate has two inputs, both
of which must be present for the gate to �re. The �rst input is a data token, the
second, a control token. If the type of the gate (T or F) matches the data value
of the control token, then (in �ring) the data token is passed to the output of
the gate. If not, the �ring gate consumes the data token and no output token is
produced. Firing a gate always consumes the control token. Gates are the only
Data Flow nodes that do not always produce an output for every set of inputs.
Figure 9-13 shows the possible �rings of T gates and F gates.

Simple-merge actors, like gates, allow control tokens to regulate the ow of data
tokens. A simple-merge actor has three input lines: a control line and two data
lines|a true line and a false line. In �ring, a token is taken from the data line
that matches the value on the control line and is placed on the output line. The
control token is also consumed. The value on the data line that is not selected
is not a�ected. Hence, each �ring of a simple-merge actor consumes exactly two
tokens. In contrast with the �ring rules for the other elementary actors, there
need not be a token on the unselected line for a simple-merge actor to �re. If the
control token and the \correct" data token have reached a simple-merge actor,
the actor can �re. Figure 9-14 shows the �rings of a simple-merge actor.

Conditionals One common subgraph of Data Flow programs is to combine a
T gate, an F gate, and a simple-merge into a graph that computes a conditional.
The Data Flow graph in Figure 9-15 is equivalent to the expression

Figure 9-12 Firing a decider.
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Figure 9-13 Firings of gates.

Figure 9-14 Firings of the simple-merge actor.
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Figure 9-15 The Data Flow graph: if b then ThenVal else ElseVal.

if b then ThenVal else ElseVal

In this example it is critical that the unselected gate consume the unneeded
token, preventing it from interfering with the next cycle of the computation. If
b is true, then ElseVal is consumed by the F gate; if b is false, then ThenVal is
consumed by the T gate.

A simple loop Figure 9-16 shows a Data Flow graph for computing z = xn,
adapted from Dennis [Dennis 74]. This Data Flow graph is equivalent to the
pseudoprogram

function exp (x, n);
begin

y := 1;
i := n;
while i > 0 do

begin

y := y * x;
i := i � 1;

end;
z := y;

return (z)
end
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Figure 9-16 z = x
n.

This Data Flow computation is driven by the >0 test. This test sends its boolean
signal to each of the three simple-merge actors and the four gates. The simple-
merge actors serve only to keep the next input data out of the computation after
the �rst time around the loop. Each of the T gates receives the boolean signal,
allowing the data tokens to pass through the computational loop again. One T
gate serves to iterate the values of x, another y, and the third i. When i is �nally
reduced to zero, the boolean signal is false and the F gate passes the answer (the
current value of y, called z) to the external environment.

Demultiplexer Data Flow diagrams resemble circuit diagrams. This resem-
blance brings to mind both the circuit designer's repeated use of similar elements
and typical circuit design problems. Our next example is a Data Flow demulti-
plexer (demux) built out of many similar elements. A multiplexer accepts several
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Figure 9-17 A demux unit.

signal lines, typically a power of 2, numbered from 0 through 2n�1, and a control
line with an integer in that range, i, and passes the value on the ith control line
to the output. (Thus, a conditional expression can be viewed as a multiplexer
over true and false.) A demultiplexer performs the inverse function|it takes a
value v and a control signal i and places v on the ith output line.

We build our demultiplexer out of a tree of demux units. Each unit has two
inputs and four outputs. The inputs are the value v that is to be the eventual
output of the demux and the current selection index, i. The four outputs are
veven, ieven, vodd and iodd. If i is an even number (its least signi�cant bit in
binary representation is zero), then tokens are sent to the even lines; otherwise,
tokens are sent to the odd lines. The output lines ieven and iodd get the value
of i (integer) divided by 2, ready to have its next bit tested. A demux unit is
illustrated in Figure 9-17.

The full demultiplexer tree has one demux unit at the �rst level, two at the
second, four at the next, and so forth. The tokens for the next level of indices
(the interior dotted region of Figure 9-17) are omitted on the bottom level.
Figure 9-18 shows the structure of the full demultiplexer.*

* This demultiplexer has the disadvantage that its outputs are not in numerical order. If

we had tested the high bit of the index at each test, the outputs would be sorted.
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Register The availability of feedback loops in Data Flow programs leads to the
possibility of building registerlike Data Flow graphs. The Data Flow graph in
Figure 9-19 behaves like a register. Our archetypical register responds to two
kinds of requests: value \setting" requests and value \getting" requests. This
register interprets a token with the special symbol s as a request for its value.
Any other token stores the value of that token in the register. In either case, the
register places a token with its (new) value on the output line.

Extensions to the Data Flow Model

All Data Flow actors except simple-merge require that all inputs be present
before the node is enabled. Even simple-merge requires the presence of the nec-
essary tokens before �ring. One extension to Data Flow is the addition of an-
other type of actor, indeterminate-merge [Dennis 77]. An indeterminate-merge

actor has two inputs. It is enabled when either input line has a token. When an

Figure 9-18 The demultiplexer structure.
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Figure 9-19 A Data Flow register.

indeterminate-merge actor �res, it passes a token from one of its input lines to
its output line, leaving the value on the other line unchanged. A possible �ring
sequence of an indeterminate-merge actor is shown in Figure 9-20. Our example
shows new tokens appearing between the �rings. The indeterminate-merge actor
is antifair; a token on a particular input line can be arbitrarily and inde�nitely
ignored.

We can build an n-input, indeterminate-merge Data Flow graph by cas-
cading binary indeterminate-merges. Figure 9-21 shows one such graph. Since
n-input indeterminate-merge graphs are such a straightforward extension of bi-
nary indeterminate-merges, we treat the n-ary case as primitive.

The addition of indeterminate-merge changes the semantics of Data Flow.
Without indeterminate-merge, Data Flow is an applicative, Turing-equivalent
formalism like the lambda calculus. Indeterminate-merge introduces indetermi-
nacy. Data Flow programs that use indeterminate-merge are no longer functional.

However, indeterminate-merge provides Data Flow with a real-world aspect. Just
as hardware devices can handle asynchronous interaction on multiple input lines,
a Data Flow system with indeterminate-merge can deal with an asynchronous
set of inputs.
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Figure 9-20 Firings of an indeterminate-merge actor.

Data Flow models have been extended to permit a range of possible values
for tokens. These extensions include record-structured tokens and tokens that
are pointers into a free storage heap.

Our �nal example of a Data Flow graph brings together several of the el-
ements of the previous examples. We use the feedback idea of the register, the
demultiplexer, the indeterminate-merge described above, and structured token
values. This example presents a Data Flow graph to solve the airline reservation
problem. That problem involves keeping track of the reservations of the seats
on an airline ight. Requests come in from travel agents. Each request must be
answered, with the answer directed back to the originating agent. The system
accepts three di�erent types of requests: reservations, which attempt to reserve
seats on the ight; cancellations, which return seats to the ight; and inquiries,
which request the number of seats remaining. If there are enough seats left, a
reservation of k seats updates the number of seats left (by subtracting k) and
responds to the agent with k. If there are fewer than k seats remaining on the
ight, the response is 0. A cancellation of k seats adds k to the number of seats
left and responds with k; an inquiry leaves the number of seats unchanged, and
responds with that number. Speci�cally, let remaining be the number of seats
left on the ight. In the pseudoprogram below, the record accessing functions
query-type, size, and agent respectively extract the type of request, the number
of seats requested, and the identi�cation number of the inquiring agent.

if reservation?(x.query-type) then
if remaining � x.size then

h remaining := remaining � x.size, answer(x.agent) := x.size i
else

h remaining := remaining, answer(x.agent) := 0 i
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else if cancellation?(x.query-type) then
h remaining := remaining + x.size, answer(x.agent) := x.size i

else if inquiry?(x.query-type) then
h remaining := remaining, answer(x.agent) := remaining i

In this example, we have paired the consequences of each action. We have done
this is because the computation produces two results| one, remaining, to be
used in a feedback loop in the program; the other, answer, to be given to the
demultiplexer. The demultiplexer takes the agent number and passes this value
to that agent's line. The agent's request is on the line labeled x.

Figure 9-22 shows a Data Flow graph of the airline reservation program. In
this example, we have used three indeterminate-merges. The one used to receive
the requests of the incoming agents must be an indeterminate-merge. The other
two could be replaced by several simple actors, at the cost of a more cluttered
Data Flow graph. The capacity of the plane, 100 seats, is the value on the
initialization token.

Figure 9-21 Cascading binary indeterminate-merges.
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Figure 9-22 The airline reservation Data Flow graph.
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Perspective

Petri Nets and Data Flow share the conceptual basis of modeling change through
successive markings of a graph structure. Petri Nets is a pure modeling technique.
Computing with Petri Nets (by tricks such as counting tokens) is di�cult. Data
Flow transforms the marked, graph-structured machine to a computing formal-
ism. Data Flow captures some quality of concurrency| if several data values
reach actors at the same time, then the computations in those actors can be
done in parallel.

Data Flow has proved to be a fertile concept. It has been a source for ideas
about both computer hardware and programming languages. Several computers
whose internal architectures reect the concepts of Data Flow have been designed
and implemented. Two good surveys of Data Flow are a Computing Surveys

article by Treleaven, Brownbridge, and Hopkins [Treleaven 82] and an IEEE

Computer issue on Data Flow edited by Agerwala and Arvind [Agerwala 82].

Programming languages have also been developed to express Data Flow com-
putations. One such language is VAL [Ackerman 79; McGraw 82]. Syntactically,
VAL looks like an imperative language with the single-assignment rule|pro-
grams must guarantee that each variable is assigned only once during program
execution. Semantically, VAL is equivalent to a strongly-typed pure Lisp.

PROBLEMS

9-1 What would an indeterminate transition in a Petri net be like?

9-2 Give a Petri net that models the mutual exclusion of three processes using only six

places and six transitions.

9-3 Model a bounded producer-consumer bu�er with Petri Nets.

9-4 Modify the Petri net for the dining philosophers problem so that the system is deadlock-

free.

9-5 Petri Nets can be extended to produce more powerful automata. Peterson ([Peterson 81])

outlines several possible extensions to the standard �ring rules: (a) Constraints modify the

�ring rule to specify sets of places that must always retain an empty place. (b) An exclusive-or

transition �res when exactly one of its input places has a token. The transition consumes that

token. (c) Switch transitions use the presence or absence of a token on a special \switch"

place to determine which output places get tokens. (d) Inhibitor arcs lead to places that must

be empty before a transition can �re. (e) Priorities can be associated with transitions. If

several transitions are enabled, the transition with the highest priority �res. (f ) Time Petri

Nets associates two times with each transition. It requires that every enabled transition wait at

least as long as its �rst time but not as long as its second before �ring. Each of these extensions

allows for determining empty places and each makes Petri Nets Turing-equivalent.

Devise other possible extensions to the �ring rules that allow empty place testing and

Turing equivalence.

9-6 Three missionaries and three cannibals come to a river. They want to cross. The only

way across the river is in a single rowboat. This boat can hold only two people; it can be

rowed by one. Clearly, to cross the river the travelers will have to row back and forth. However,

the cannibals are afraid that if some of their group are ever left outnumbered by missionaries
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(including the people arriving at a river bank) they will be converted, a dire possibility that

cannot be allowed to happen.

(a) How can the group cross the river?

(b) Present a Petri net that models this situation, including the constraint on outnum-

bered cannibals.

9-7 What is the e�ect of omitting the T gates in the Data Flow program that computes

exponentiation?

9-8 Write a Data Flow graph that computes successive Fibonacci numbers.

9-9 What happens to the Data Flow register if the �rst token sent is the special value s?

9-10 Redo the Data Flow graph of the airline reservation problem using simple-merges instead

of the two unnecessary indeterminate-merges.
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